北大ら,光機能性ナノワイヤをSiウエハーに大量集積

北海道大学,愛媛大学,東京大学は,発光・受光機能に優れたガリウムヒ素系半導体ナノワイヤをシリコンウエハー全面に大容量で集積することに成功した(ニュースリリース)。

III-V族化合物半導体とシリコンエレクトロニクスとの統合は長年追求されており,様々なアプローチが試みられてきた。

熱膨張係数差から,シリコン上のIII–V族半導体のエピタキシャル成長は困難だが,小さな開口部から針状結晶を形成させるナノワイヤではエピタキシャル成長できる。太陽電池などの応用では大量生産が求められるが,エピタキシャル成長で主に用いられる,有機金属気相エピタキシーや分子線エピタキシーといった方法は不向きと考えられていた。

研究では,分子線エピタキシー法において,構成元素ガリウムの自己触媒効果を用いることで,市販のシリコンウエハー上に前処理を一切必要とすることなく,適切な結晶作製条件を用いるのみでデバイス応用可能な高品質なナノワイヤが簡便で大量に合成可能なことを示した。

ナノワイヤ作製は市販の2インチシリコン(111)ウエハーを基板に,分子線エピタキシー法により行なった。ここで,ガリウムヒ素結晶を成長させるために用いる構成元素のガリウムそのものを結晶の核生成と成長を促進する触媒として用いた。シリコンウエハー上にガリウム液滴を形成し,そこから光機能の高いガリウムヒ素ナノワイヤを形成させた。

具体的には,長さ約6µm,直径約250nmのナノワイヤを作製した。直径5cmのシリコンウエハー上では,約7億本の微細なナノワイヤを,前処理などを用いず単一の分子線エピタキシー法のみで簡便に形成することができる。

ナノワイヤを成長したウエハーは,市販のガリウムヒ素基板と同等かそれ以上の発光強度を持ち,さらにその発光波長はウエハー全体で均質だった。また,ナノワイヤ最外殻表面が空気に触れて自然酸化することで形成される自然酸化膜は,ナノワイヤの表面を安定な酸化膜で長期間保護し,光特性の向上に寄与することも示された。

ワイヤは非常に均質で高品質であり,微細な積層構造も形成可能であることから各種のデバイスも作製可能だという。ナノワイヤ群では効率的な光吸収が促進される結果も得られていることから研究グループは,太陽電池の大出力化や,シリコンテクノロジーへの安価で高機能な光機能付加など新しい展開が期待されるとしている。

その他関連ニュース

  • 2025年,建設開始予定の新規半導体工場は18棟 2025年01月08日
  • DNP,EUV向け2nm世代以降のパターン解像に成功 2024年12月13日
  • 浜ホト,米BAE Imagingを買収 光半導体事業を強化へ
    浜ホト,米BAE Imagingを買収 光半導体事業を強化へ 2024年12月10日
  • TEL,節水型300mmウエハーレーザー剥離装置を発売 2024年12月09日
  • ニコン,寸法を測定できる画像測定システムを発売 2024年12月05日
  • 名大,高錫組成14族ゲルマニウム錫単結晶薄膜を創製
    名大,高錫組成14族ゲルマニウム錫単結晶薄膜を創製 2024年11月29日
  • 日立ハイテクら,高分解能Laser-PEEMを半導体応用
    日立ハイテクら,高分解能Laser-PEEMを半導体応用 2024年11月12日
  • SCREEN,200mm対応ウエハー洗浄装置を発売 2024年11月06日