東工大,光学顕微鏡で三次元分子解像度を実現

東京工業大学は,可視光のみで1個の分子の三次元位置をオングストローム(0.1㎚)の精度で決定することに成功した(ニュースリリース)。この精度は現存する最高性能の光学顕微鏡である超解像蛍光顕微鏡(2014年ノーベル化学賞)を1桁しのぎ,分子を見分けられるレベル(分子解像度)に達している。

生命現象に関わる分子の観察には,例えば,生体試料を測定できる最も高解像度なクライオ透過電子顕微鏡では,高い解像度を出すためには試料を薄くスライスする必要があり,細胞全体を観察できない。また,生体試料全体を見渡せる光学顕微鏡では,解像度が最も高い超解像蛍光顕微鏡でも分子レベルには1桁足りないという問題がある。研究グループは,上記の2つの顕微鏡から,生体試料への応用性が高い光学顕微鏡に注目し,その弱点である低い解像度を克服することを目指した。

光学顕微鏡の解像度は,被写体である生体分子の動きによって決まる。クライオ透過電子顕微鏡と同様に試料を-271℃まで冷却(超流動ヘリウム中)すれば,分子の動きが完全に凍結し,分子レベルの鮮明な画像が観察できるはずだが,機械的安定性も従来品に比べて桁違いに向上させる必要がある。これについて研究グループは,試料と対物レンズを同一の環境に置くことが安定性に最も大切であることを明らかにした。

しかし,-271℃で使用できる高性能な対物レンズは存在しなかったため,2004年から10年かけ,極低温下で動作して高性能な対物レンズを独自開発し,目標とするオングストロームの機械的安定性を実現した。実際にこの顕微鏡を用いて,色素1分子の三次元位置をオングストロームの精度で決定することに成功した。この解像度は既存の光学顕微鏡よりも1桁以上高く,分子を見分けられるレベル(分子解像度)に到達している。

空間フィルターのユニットは,堅牢なステンレスの箱中に光学系を組むことで,高い機械的安定性を実現した。さらに,その他の光学系も同様なユニット化することで,顕微鏡のイメージ安定性を高めた。これらのユニットの設計,開発も独自に行なった。

生命現象には多くの謎が残されている。これは,生命現象が起こっている現場である細胞内を観察する方法が不足しているため。この研究成果を元に,「生命現象の分子レベル画像化」を目指すとしている。

その他関連ニュース

  • 阪大ら,凍結生体の分子を高感度観察する顕微鏡開発 2024年12月12日
  • 農工大,光学顕微鏡で非接触に高分子濃度の分布測定 2024年12月12日
  • 日立ハイテクら,高分解能Laser-PEEMを半導体応用
    日立ハイテクら,高分解能Laser-PEEMを半導体応用 2024年11月12日
  • 宮崎大,光顕用パラフィン切片で電顕解析を可能に 2024年10月11日
  • 東大ら,世界最高速の蛍光寿命顕微鏡を開発 2024年09月05日
  • 新潟大,超解像顕微鏡でアクチン細胞骨格を3D撮影 2024年07月19日
  • 順天堂大ら,安価なDIY光シート顕微鏡システム開発 2024年07月02日
  • 東大ら,XFELで生体観察できる軟X線顕微鏡を開発 2024年05月24日