1. はじめに
試料に刺激(ポンプ)を与えて,その刺激を光(プローブ)の透過率変化で検出する方法,ポンプ・プローブ法において,光源の強度揺らぎ(強度雑音)を除去して信号雑音比(S/N)を向上させる方法を述べる。特に,白色プローブ光の分光計測に適用できるのが特徴である。本稿では若手研究者の挑戦という題目に即して,過去と現状の困難な点,失敗や解決法を述べる。
2. 導入
2.1 ラマン散乱の概要
様々な振動モードに応じて分子振動スペクトルは何本かの振動バンドを有する。この分子振動スペクトルは分子構造に敏感で,スペクトルから試料に含まれる物質の定性分析や分子の配座の分析1)が可能である。さらに,信号強度は濃度に比例するので,定量分析も可能である2, 3)。また,励起される振動モードと励起光の偏光方向には一定の関係がある。この関係を用いて,振動バンド強度比から試料に含まれる分子配向の分析4〜6)もできる。また,振動準位は分子周囲の状況にも影響を受けるので,試料に含まれている個々の分子が置かれている状況が不均一であれば,振動バンドがそれだけ太くなる。従って,振動バンドの半値幅から試料の結晶性などの凝集状態4)が分かる。
分子振動計測法7, 8)の一つに自発ラマン分光法がある。この方法は試料に励起光(通常はレーザー)を照射し,散乱光を観測する。この散乱光の内,分子振動エネルギーの分だけ波数が変化したラマン散乱光が現れる。これを観測することで分子振動スペクトルが得られる。この方法の特徴は,散乱光を観測するため試料に特別な操作を加える必要が無く非破壊,非接触測定であることと,励起光の波長は任意で例えば,赤外吸収分光法で問題になる水の吸収を避けることができること,空間分解能は励起レーザーの波長の程度(可視光ならサブミクロン),非染色9)で複数の分子の濃度を測定できることである。