原研ら,原子レベルで強磁性発現メカニズムを解明

日本原子力研究開発機構,東京大学,東京工業大学、京都産業大学らは共同で,強磁性半導体が常磁性状態から強磁性状態に変化していく過程を詳細に観察することで,原子レベルでの強磁性発現メカニズムを明らかにすることに成功した(ニューリリース)。

次世代情報化社会に欠くことができないスピントロニクス技術の材料として,強磁性半導体が注目されている。スピントロニクスとは,エレクトロニクス材料にさらに磁石の性質(スピン)を付け加えることで,扱える情報量を飛躍的に増大する次世代技術であり,世界中でしのぎを削ってその研究開発が進められている。

強磁性半導体の最大の課題は,低温でのみ強磁性が発現することであり,発現温度の高温化のためには強磁性発現のメカニズムについての正確な理解が切望されている。

研究では,大型放射光施設SPring-8の原子力機構専用ビームラインBL23SUを利用して,強磁性半導体の代表的な物質のひとつである(Ga,Mn)As中のMn原子の磁性情報だけを抜き出し,温度の降下とともにMn原子が常磁性状態から強磁性状態に変化していく過程を詳細に観察することで,原子レベルでの強磁性発現メカニズムを明らかにすることに成功した。今回観測された磁化過程は,理論的に予測されている磁気ポーラロンモデルで(Ga,Mn)Asの強磁性発現のメカニズムがよく説明できることを強く示した。

研究グループは,この研究で明らかにされた原子レベルでの強磁性発現メカニズムについての知見は強磁性半導体の性能向上への鍵となるものだという。これは新規強磁性半導体の物質設計へのベースとなる研究結果であり,既に極低温では実証されているスピントランジスタなどをはじめとした次世代スピントロニクスデバイスの室温動作実現に向けた指針を与えるものだとしている。

その他関連ニュース

  • 理科大ら,ベクトル光渦の空間構造をスピンに印刷 2023年03月27日
  • 北大,室温で高電圧動作が可能なスピンLEDを実現 2023年02月22日
  • 東大ら,新たな巨大スピン流発生材料の開発に知見 2023年02月15日
  • 兵県大ら,希土類フリー酸化物で光スイッチング観測 2023年01月12日
  • 公大,実用的なスピン拡散長を持つ分子薄膜材料発見 2023年01月12日
  • 東大ら,FeSiで室温下の電流誘起磁化反転を実現 2022年12月21日
  • 立命大ら,荷電π電子系に新たな電子物性制御を実現 2022年11月17日
  • 東北大,メタマテリアルでスピン流の制御に成功 2022年11月11日