中大,光生成キャリアの可視化に成功

中央大学の研究グループは,ナノ秒の時間分解能を持つ位相差顕微鏡を開発し,統計的データ解析手法である画像回復の方法と組み合わせることで,光触媒などに頻繁に用いられる無機系半導体微粒子で構成する薄膜材料中の光生成キャリア(電子やホール)を可視化することに成功した(ニュースリリース)。

光触媒・太陽電池などの太陽光デバイスでは,界面での反応を用いるため,表面積の大きいナノ・マイクロサイズの多孔質の半導体基板材料が用いられる。これらのデバイスでは,光生成キャリアを有効に利用する必要があるが,反応が速く,また,検出しやすい発光などを伴わないために検出が難しい問題があった。

研究グループは,太陽光デバイスに用いられる半導体光励起キャリアの時空間変化を可視化するために,独自に開発した位相差顕微鏡に励起光(光励起キャリヤ生成用)と照明光(顕微鏡の照明用)に5nsのパルスレーザー光源を用いて,両者を精密に制御することで高時間分解能イメージングを可能にした。

さらに励起光をデジタルマイクロミラーを用いることで空間パターンをもつ照射を行ない,励起キャリヤの失活過程を画像変化としてとらえた。このように画像にパターンを持たせることで,主成分分析や周波数成分のスパース性を利用して,微弱な屈折率画像を回復する方法を開発した。

さらに,この「見える化」したキャリヤの時間応答を天気・大気予測などでもよく用いられるデータ同化の手法を転用し,局所のキャリヤの動きをモデル化することで拡散係数や寿命といった物性値に変換してキャリヤの物性値マッピングを可能にした。

光触媒材料である酸化チタンのナノ粒子で構成された薄膜に適用したとこと,ドット状に光生成したキャリアがナノ秒からマイクロ秒にかけて生成・緩和していく様子が示された。開発した装置では,屈折率変化を利用して半導体中のキャリアの動的挙動を可視化した。

同様のキャリア可視化手法には,キャリアの発光や色変化を利用するものがあるが,多くのキャリアはそのどちらも伴わない場合が多い。開発した装置は,このような「見えなかった」キャリアを「見える化」した初めての例だという。このことは,もともと変化の小さい屈折率変化画像を,近年AIの進展で開発が加速された画像回復手法を用いることで可能になった。

これは太陽光デバイスに用いられる材料全般に利用できる方法であり,今後,光触媒・太陽光水分解・太陽電池などの材料中のキャリア物性のよい・悪い箇所の判定に用いることが可能であり,高効率太陽光デバイス開発につながるものとしている。

その他関連ニュース

  • 産総研,CIS型薄膜太陽電池の光電変換効率を向上 2024年11月13日
  • 日立ハイテクら,高分解能Laser-PEEMを半導体応用
    日立ハイテクら,高分解能Laser-PEEMを半導体応用 2024年11月12日
  • 産総研,高性能を維持できる光触媒のシート化に成功 2024年11月05日
  • 富士フイルム,EUV用フォトレジスト/現像液を発売 2024年11月05日
  • ニコン,解像度1.0μmのデジタル露光装置を開発 2024年10月22日
  • 千葉大,目的生成物を自在に選べる光触媒を発見
    千葉大,目的生成物を自在に選べる光触媒を発見 2024年10月07日
  • 東北大ら,水分解光触媒の水素生成面に助触媒を担持
    東北大ら,水分解光触媒の水素生成面に助触媒を担持 2024年10月07日
  • 産総研,ペロブスカイトPV自動作製システムを開発 2024年10月03日