筑波大ら,コヒーレントフォノン生成の一端を解明

筑波大学と米ピッツバーグ大学は,半導体シリコンに高強度超短パルスレーザーを照射した直後に誘起されるプラズモンと縦光学フォノンの非断熱相互作用が,格子ダイナミックスを支配する要因の1つであることを,理論と実験の両面から立証した(ニュースリリース)。

10fs程度の時間幅を有する高強度超短パルスレーザーを半導体に照射すると,高密度電子励起に伴い時間・空間的に位相が揃った縦光学フォノンが励起され,巨視的物理量の統計的平均を取っても位相が相殺されないコヒーレントフォノンと呼ばれる顕著な振動現象が現れる。

コヒーレントフォノンが生成する直前の100fs程度の時間領域における超高速量子ダイナミックスは,依然として未開拓な課題だが,近年,内在する量子力学効果の解明が進みつつある。

従来,コヒーレントフォノンの振動パターンは,パルス照射後から100fs程度以降の時間領域(古典領域)において現れ,主として古典力学に基づく減衰強制振動モデルによって現象論的に理解されてきた。

コヒーレントフォノンの生成は,それ以前の100fs程度までの時間領域(初期時間領域)における,光・電子・縦光学フォノンが動的に相互作用する量子力学的機構によると考えられているが,この時間領域における観測シグナルは,物質系に起因しないレーザー間の光学的干渉効果によって遮蔽されるため,永らく議論の対象外となっていた。

今回の研究では,超短パルスレーザーによって励起されたキャリアと縦光学フォノンが結合して,過渡的な複合量子状態であるポーラロニック準粒子が形成されるというモデルに基づき,理論の構築を行なった。

プラズモンとフォノンの両モードがローゼン-ツェナー型非断熱相互作用を起こすことによって,コヒーレントフォノンの時間シグナルに特異な振動パターンが発現し,そのスペクトル形状に顕著な非対称性が発現する現象を見出した。この理論計算を実験と比較し,有意な一致を得ることに成功した。

研究グループは,今回の研究によって,これまでの時間領域で引き起こされるコヒーレントフォノン生成の前駆過程の一端が解明され,今後の光誘起超高速ダイナミックスの研究の進展に寄与することが期待できるとしている。

その他関連ニュース

  • 東大,硬さが異なる材料界面の熱伝導に知見 2021年05月06日
  • パナ,フォノニック結晶で赤外線センサー感度向上 2021年04月16日
  • JAISTら,第一原理量子モンテカルロ法で格子振動計算 2021年03月19日
  • 京大,THzでペロブスカイトのキャリア損失を抑制 2021年02月22日
  • 豊工大,サブ半サイクルパルス光の発生に成功 2020年11月19日
  • 理研ら,AIでシリコンの特性をリアルタイム予測 2020年11月16日
  • 東大ら,光で窒化シリコン薄膜の熱伝導率を倍増 2020年10月01日
  • 電通大ら,シリコンの高感度赤外線受光素子を開発 2020年09月17日