新潟大,超高解像顕微鏡で神経成長を観察

新潟大学の研究グループは,超高解像顕微鏡を使って,神経の先端が伸びるとき,同時に先端から細胞膜を取り込む仕組みを明らかにした(ニュースリリース)。

成長円錐は伸長中の神経突起の先端に生じる構造で,細胞外の誘導因子に反応して神経突起を正しい方向へ先導することが知られているが,そのメカニズムは完全に説明できていない。

成長円錐が動く仕組みを明らかにするため,成長円錐を構成する部品であるタンパク質を網羅的に同定し,それらのタンパク質が成長円錐のどこに存在するかを明らかにするため,蛍光顕微鏡で生きた成長円錐で観察を行ない,成長円錐の先端から細胞膜が頻繁に細胞内に取り込まれていることを突き止めた。

成長円錐の中でも先端部分はアクチン細胞骨格が沢山存在し,骨格の伸長により実質的な神経の伸びを生み出す。成長円錐の先端部分におけるアクチン細胞骨格と細胞膜のそれぞれの動きを詳細に観察するため,従来の顕微鏡より分解能が格段に優れている超解像顕微鏡(SIM)を使って撮影を行なった。

これらの結果から,神経が伸びながら先端表面の細胞膜を積極的に取り込むことによって,細胞外環境を探る成長円錐のメカニカルな仕組みが解明できた。

神経突起の先端に生じる成長円錐は非常に小さく,厚みの薄い構造なので,従来の顕微鏡では平面的にしか見えない。今回の超解像顕微鏡による解析では,約1㎛の厚みをもつ成長円錐を3次元的にスライスして再構成することに成功した。この可視化技術は,これまで観察が難しかった生体試料の微小立体構造の解明に効果的だとしている。

神経成長の分子基盤解明は,損傷神経回路の再 生・再建および老化や疾患に対する神経再活性化の方法開発にも大きく寄与することが期待される。これまで骨格と膜の協調運動がわからず,どのように神経を再生できるかわからなかったものが,今回解明でき,神経再生への基盤が解明できたとしている。

その他関連ニュース

  • 阪大,マシンビジョンで細胞100万個同時観察 2021年08月20日
  • 横市大ら,気孔を認識するAI顕微鏡システムを開発 2021年07月29日
  • 群大ら,高精細・低コスト3Dイメージング法を開発 2021年07月13日
  • 府大ら,光触媒ナノ粒子の近接場光を画像化 2021年06月24日
  • 佐賀大,パワー半導体の欠陥を顕微鏡で同定 2021年06月02日
  • 東工大ら,フォトニック構造の特性が分かる顕微鏡 2021年05月31日
  • 愛媛大,生体観察用2光子励起光シート顕微鏡開発 2021年05月25日
  • ニコン,最大視野数の共焦点レーザー顕微鏡を発売 2021年04月28日