3. 真空紫外光による表面処理
図2は,VUV光による表面処理の一例として,シリコーンゴムの表面に波長172 nmのVUV光を照射した前後における,水に対する接触角の変化を示している4)。図2(a)に示すように,未処理のシリコーンゴムに対する水の接触角は約110℃前後で液滴状を形成するのに対し,照射後の表面では水が基板上に濡れ広がっている様子が見て取れる。
図2(b)は,真空紫外光だけでなく,真空中の酸素プラズマやコロナ放電型の大気プラズマ装置で同様の処理をした表面における,接触角の照射量依存性をまとめたグラフである。ところで,表面励起の効率は装置の出力に依存するため,装置間で一意に処理効率を比較することはできない。従って,図中の処理時間は,あくまで我々が実験をしたときの値であり,照射量と接触角変化のトレンドを見るための目安を表したものに過ぎなく,高出力の装置を使えば当然ながらより短時間で同等の処理が可能であることを強調しておきたい。
図2(b)によれば,いずれの処理方法でも,接触角は照射量が増えるほど低くなり,最終的には計測不能レベルまで小さくなる(ほぼフラットになる)。この傾向は他の材料に真空紫外光を照射した場合でも同様で,我々が試した限りにおいて,テフロンのような化学的に安定性の高い高分子材料含め,様々なプラスチック,ガラス,金属,セラミックスなどで,程度の差こそあれ同様に親水化できることが実証されている。
我々はこのような親水化処理を,例えば,流体系のMEMSデバイスにおける流路内壁の親水化処理による送液性の改善に応用したり,あるいは表面コーティングにおけるプライミング処理として利用している。通常ではコーティング出来ないような素材とコーティング剤の組み合わせでも,表面を親水化(活性化)することによって濡れ性が向上してコーティングが可能となるため,例外はあるものの,様々な材料におけるプライミング処理としてユニバーサルに用いることができると考えられる。