1. はじめに
X線自由電子レーザー(XFEL)・大型放射光施設の利用実験では,X線の回折・散乱像を広範囲に取得する実験が多く,このデータの取得にX線イメージング検出器が主なツールとして用いられる。検出器としての基本性能である感度・ダイナミクスレンジ・フレームレート・センサー面積・放射線耐性が高いレベルで要求されるため,放射光科学分野では最先端のX線イメージング検出器の開発が行われている。
中でも,10μm以下の高空間分解能イメージングが要求されるX線撮像・X線CT・X線トポグラフィではシンチレーターを用いた間接変換型の検出器が用いられている。間接変換型は,高エネルギーX線に対する量子効率(阻止能)が高いなどのメリットがある。しかし,イメージの滲みや検出面の感度ムラが大きく,定量性に劣るとされてきた。
本稿では,シンチレーターと結像光学系を用いたX線の間接変換検出によるX線の高空間分解能イメージングの手法を,間接変換検出の問題を解決する新たな薄膜シンチレーターの製法1)と共に紹介する。この手法では,間接検出型の理論限界に相当する空間分解能と,極めて感度ムラの小さなシンチレーター面を持つため,間接検出型の適用範囲を大きく広げると期待される。
2. X線高空間分解能イメージング
X線の間接変換検出はA)シンチレーター,B)結像光学系,C)可視用イメージセンサーの3つの要素で構成される(図1)。A)にX線を照射すると可視領域の蛍光が発生し,これをB)でC)に結像する。ピクセルサイズはレンズやファイバーオプティクスプレート等の光学系を使用し,イメージの拡大縮小をして目的に応じたサイズに設計できる。空間分解能は理想的にはA)の蛍光波長とB)の開口数による回折限界で決まる。