カルコゲン化合物を用いた中赤外波長可変コヒーレント光源

2.2 電子波長制御Cr:ZnSeレーザーの出力特性
図2 電子波長制御Cr:ZnSeレーザーの波長可変域特性と波長掃引曲線
図2 電子波長制御Cr:ZnSeレーザーの波長可変域特性と波長掃引曲線

電子波長制御Cr:ZnSeレーザーの出力特性を評価した。図2にAOTFに印加するRFを変化させることで得られる出力エネルギーの波長依存性を示す。励起エネルギーは24 mJとした。AOTFに印加するRFを36.2〜46.8 MHzの間で変化させたとき,Cr:ZnSeレーザーの発振波長は2.12〜2.70μmの波長領域で制御することが可能であった。また,それぞれの波長において出力エネルギーが最大になるように0〜5 Wの間でRFの出力を調整した結果,Cr:ZnSeの中心利得近傍の2.41μmで出力エネルギーのピークが観測された。

図3 電子波長制御Cr:ZnSeレーザーの入出力特性
図3 電子波長制御Cr:ZnSeレーザーの入出力特性

なお,この時の出力エネルギーは7.9 mJであった。次に,励起エネルギーに対する出力エネルギーの関係を図3に示す。Cr:ZnSeレーザーの発振波長は,AOTFに45.0,43.0,41.0,39.0及び37.5 MHzのRFをそれぞれ印加することで,2.20,2.31,2.41,2.52及び2.63μmを選択した。

励起光源であるTm:YAGレーザーのパルスエネルギーを0から23.2 mJまで増加させたとき,それぞれの波長において出力エネルギーが線形増加することが確認された。また最大出力エネルギーは波長2.41μmにおいて,励起エネルギーが23.2 mJのときに7.9 mJを得た。このとき,エネルギー変換効率は34.1%,発振しきい値は1.4 mJであった。

図4 ビームプロファイル
図4 ビームプロファイル

また図4にCr:ZnSeレーザーの出力ビームの空間プロファイルを示す。波長2.20,2.31,2.41及び2.52μmではTEM00のビームプロファイルが観測され,励起エネルギーを変化させてもビーム品質が維持されることを確認した。しかし2.63μmの場合のみ,水平方向のビーム品質の低下が観測された。これはAOTF内部で回折される光の回折角が波長毎に異なるため,発振波長を変化させることでレーザー共振器に僅かなずれが生じたことが原因である。

同じカテゴリの連載記事

  • ガスTPCと光検出に基づく高感度アルファ線イメージ分析 神戸大学 伊藤博士 2025年06月10日
  • 単層カーボンナノチューブ光アイソレーターの研究開発 東京理科大学 入田 賢 2025年05月11日
  • 無反射多層基板を用いた光学的精密計測 神戸大学 服部吉晃 2025年04月10日
  • 超広帯域量子赤外分光 京都大学 田嶌俊之 2025年03月10日
  • 近距離光通信向け高効率ポリマー光変調器 九州大学 佐藤 洸 2025年02月10日
  • 近赤外光硬化性樹脂を用いた自己形成光導波路によるシリコンフォトニクス自動接続 宇都宮大学 寺澤英孝 2025年01月10日
  • 竹のチカラで紫外線による健康被害を防ぐ 鹿児島大学 加治屋勝子 2024年12月10日
  • 光周波数コムを用いた物体の運動に関する超精密計測と校正法 東北大学 松隈 啓 2024年11月10日