NVIDIA,計算機リソグラフィを生成AIで大幅高速化

NVIDIAは,台湾TSMCと米Synopsysが,NVIDIAのコンピュテーショナル リソグラフィ(計算機リソグラフィ)プラットフォームを使用して次世代半導体チップの生産を開始すると発表した(ニュースリリース)。

TSMCとSynopsysは,「NVIDIA cuLitho」を同社のソフトウェア,製造プロセス,およびシステムと統合してチップ製造を高速化し,将来的には最新世代のNVIDIA BlackwellアーキテクチャGPUをサポートするという。

NVIDIAはまた,GPUアクセラレーテッド コンピュテーショナル リソグラフィ用ライブラリである「cuLitho」を強化する新しい生成AIアルゴリズムを導入し,現在のCPUベースの方法に比べて半導体製造プロセスを大きく改善したとする。

コンピュテーショナル リソグラフィは,半導体製造プロセスの中で最も計算負荷の高いワークロードであり,CPUで年間数百億時間を費やす。チップ用の一般的なマスクセット(製造における重要なステップ)には,3,000万時間以上のCPU計算時間がかかることもあり,半導体ファウンドリ内に大規模なデータセンターが必要になる。

アクセラレーテッド コンピューティングにより,350台の「NVIDIA H100」システムで40,000個のCPUシステムを置き換えることができるようになり,コスト,スペース,電力を削減しながら生産時間を高速化するとしている。

TSMCは昨年の導入以来,「cuLitho」により,新たなパターニングテクノロジを開発。共有ワークフローでテストしたところ,曲線フローで45倍,より伝統的なマンハッタン スタイルのフローでは60倍近い高速化を実現した。

これら2つのタイプのフローは異なり,マスクの形状が曲線で表されるが,マンハッタンのマスクの形状は水平または垂直のいずれかに制約されるという。

新しい生成AIワークフローは,「cuLitho」によるプロセスの高速化に加えて,さらに2倍のスピードアップを実現する。生成AIを適用すると,光の回折を考慮したほぼ完璧な逆マスクまたは逆解を作成できる。その後,最終マスクが導出され,光近接効果補正(OPC)プロセス全体が2倍高速化されるという。

現在,ファブプロセスの多くの変更はOPCの改訂が必要となり,必要なコンピューティング量が増加しているが,これらのアクセラレーテッド コンピューティングと生成AIによって軽減されるとしている。

その他関連ニュース

  • KEK,動作中の半導体デバイスの内部構造を可視化 2025年04月11日
  • 早大,AIで光駆動有機結晶の発生力を3.7倍向上 2025年04月04日
  • 浜ホト,光半導体製造後工程の新工場が竣工 2025年03月28日
  • 阪大ら,半導体と金属界面の接触抵抗の評価法を一新 2025年03月27日
  • inspec,露光装置事業からの撤退を発表 2025年03月24日
  • 浜ホト,韓国に半導体故障解析装置の工場新設 2025年03月13日
  • 統数研ら,機械学習で結晶構造予測の最高性能達成 2025年03月11日
  • 東大,フォトマスク1枚のAIプロセッサ作製法を開発 2025年02月26日