EHTと各種望遠鏡,巨大ブラックホールを同時観測

地球上の8つの電波望遠鏡をつないだイベント・ホライズン・テレスコープ(EHT)と地球上の各地,さらに宇宙にある多くの様々な望遠鏡は,楕円銀河M87の中心にある巨大ブラックホールを一斉に観測し,この巨大ブラックホールがこのとき非常に「おとなしい」状態にあったことを明らかにした(ニュースリリース)。

2017年4月,EHTがこの巨大ブラックホールを観測し,ブラックホールの「影」の撮影に史上初めて成功した。ところが,EHTによるこの観測だけでは周囲に存在するはずのジェットをはっきりと写し出すことはできず,ジェットとの関連やブラックホール周辺の詳しい構造については未解明のまま残されていた。

このとき,EHTによる観測と協調する形で,世界中の多くの望遠鏡も同時期にM87のブラックホールに向けられていた。地球上の各地,さらに宇宙にある多くの電波望遠鏡,可視光線・紫外線望遠鏡,エックス線望遠鏡,ガンマ線望遠鏡が,楕円銀河M87の中心にある巨大ブラックホールを一斉に観測した。

観測の結果,巨大ブラックホールから噴き出すジェットの根元近く(0.3光年)から5000光年ほどまで広がっている姿が,様々な波長の電磁波で明らかになった。これは,言ってみればジェットの「多色画像」を捉えたことになる。

今回観測された波長帯のうち,エックス線,ガンマ線といった高エネルギー電磁波放射のデータを分析した結果,2017年4月ごろのタイミングでは,巨大ブラックホールの活動性が非常に静穏だったことがわかった。

また,観測結果と理論・シミュレーション研究の結果を比較したところ,EHTで観測されたリング状の電波放射領域とは異なる場所でガンマ線が放射されていると考えると,観測結果をうまく説明できることがわかった。

これは,巨大ブラックホールが噴き出すジェットが複雑な構造を持っていることを示す結果であり,ジェットの形成メカニズムやブラックホールとのつながり,多彩な電磁波放射メカニズムの解明に迫るための新たな知見を与える成果だとしている。

その他関連ニュース

  • 公大,1台のカメラで薄膜の皺の大きさを測定 2024年11月22日
  • 国立極地研究所ら,日本出現のオーロラ色の謎を解明 2024年10月31日
  • 広島大,暗黒物質に関する新しい観測手法を提案 2024年10月03日
  • 三菱電機,宇宙光通信モジュールの軌道実証に成功 2024年09月30日
  • 筑波大,超高光度降着円盤の歳差運動を実証 2024年09月20日
  • NAOJら,カイパーベルト外に未知の天体集団を示唆 2024年09月05日
  • JAXA,SLR用小型リフレクターの反射光取得に成功
    JAXA,SLR用小型リフレクターの反射光取得に成功 2024年08月22日
  • 立教大,X線偏光でブラックホール近傍の変化を観測 2024年07月30日