バンドギャップ(BG)制御されたグラファイト状窒化炭素の新規合成法の開拓~BG=2.7–0 eVの自在制御への挑戦~

1. はじめに

現在,エネルギー消費は増加の一途をたどり,温室効果ガスの放出も増加している1, 2)。脱化石燃料が唱えられる中,新たなエネルギー生産サイクルの確立に向けて基礎から応用まで広く研究が進んでいる。光エネルギーや電気エネルギーを用いたエネルギー変換システム,特に水や二酸化炭素,酸素などの低分子の改質反応は,燃料電池や金属−空気電池の要素反応であり,広く研究が進んでいる。これら反応の促進には,触媒が不可欠である。金属酸化物や金属錯体が,触媒として広く用いられているが,触媒の価格や安定性などの点で応用に向けて課題が残る。

図1 g-C3N4とグラフェンの構造と組成による物性変化
図1 g-C3N4とグラフェンの構造と組成による物性変化

著者は,グラフェンやグラファイト状窒化炭素(g-C3N4)など金属フリー材料を主とした光/電気化学触媒の開発/機能改質に注目した。グラフェンは導電性材料であり,その構造の一部に他元素をドープすることや他金属材料との複合化による触媒開発が進んでいる3, 4)一方,g-C3N4は,トリス-s-トリアジン骨格を基本骨格とするグラファイトに類似した2次元シート状分子である(図15)。バンドギャップが2.7 eVのn型半導体と知られ,光応答水分解触媒としての応用が期待されている。グラフェンへの窒素ドープ,または,g-C3N4への炭素ドープによって,CN系材料のバンドギャップを制御し,光触媒から電気化学触媒まで幅広い触媒開発が期待できる。安定なグラファイトへの他元素ドープは,特殊な工程が必要であるが,熱重合によって得られるg-C3N4への他元素ドープは容易に可能である。

ここではg-C3N4とグラフェンの中間領域にある炭素ドープg-C3N4について深い知見を得ることを目的とした。

2. 炭素ドープグラファイト状窒化炭素の合成法

2.1 g-C3N4の合成法及び既報の炭素ドープg-C3N4合成法
図2 g-C3N4及び炭素ドープg-C3N4の合成法例
図2 g-C3N4及び炭素ドープg-C3N4の合成法例

g-C3N4は,ジシアンジアミドやメラミンなどの前駆体を加熱することで合成可能である。これら分子が熱重合によって,melemやmelonを介してg-C3N4を形成する5)。非常に簡便な手法で合成が可能で,工業的な障害も低い。

g-C3N4への炭素ドープ法として分子ドーパントが多数報告されている。先に示した前駆体と,トリアジン類似骨格を有する環状分子であるバルビツール酸やトリアミノピリミジンなどを共熱重合させることで,炭素ドープg-C3N4が合成される(図2(b)表16, 7)。これら手法によって,C/N比は増加し,バンドギャップは1 eV程度まで低下する。

表1 可視光領域にバンドギャップを有する窒化炭素の合成
表1 可視光領域にバンドギャップを有する窒化炭素の合成

しかし,これまで報告されている合成法では,さらなる狭バンドギャップ化は困難である。また,非環状分子を用いたドーピングについても数件報告されている(表1)。これら手法は大過剰のドーパント分子を添加しているが,バンドギャップはわずかにしか変化しない。高価なドーパント及びその過剰な添加は,安価・簡便に合成可能なg-C3N4の利点を薄めることとなる。より安価な手法で,かつ少量のドーパント添加で炭素ドープg-C3N4が合成できれば,その価値は飛躍的に向上する。

さらなる,g-C3N4の狭バンドギャップ化(C/N比の増大)によって,分子内での電子ネットワーク構築(グラファイト類似電子系)が予測される。これまで光触媒として広く研究が進んでいる半導体特性を有するg-C3N4から,電気化学触媒として評価が進む導体特性を有するグラフェンベース触媒まで,多岐にわたる機能評価が期待できる。

同じカテゴリの連載記事

  • 組織深部を可視化する腹腔鏡用近赤外分光イメージングデバイスの開発 (国研)産業技術総合研究所 髙松利寛 2024年06月10日
  • 8の字型構造の活用による高効率円偏光発光を示す第3世代有機EL材料の開発 名古屋大学 福井識人 2024年05月07日
  • 高出力半導体テラヘルツ信号源とその応用 東京工業大学 鈴木左文 2024年04月09日
  • 半導体量子ドット薄膜により光増感した伝搬型表面プラズモンの高精度イメージング 大阪公立大学 渋田昌弘 2024年03月06日
  • 大気環境情報のレーザーセンシング技術 (国研)情報通信研究機構 青木 誠,岩井宏徳 2024年02月12日
  • 光の波長情報を検出可能なフィルタフリー波長センサの開発 豊橋技術科学大学 崔 容俊,澤田和明 2024年01月15日
  • 熱延伸技術による多機能ファイバーセンサーの新次元:生体システム解明へのアプローチ 東北大学 郭 媛元 2023年12月07日
  • 非破壊細胞診断のための新ペイント式ラマン顕微システム (国研)産業技術総合研究所 赤木祐香 2023年11月14日