東大ら,室温でTHz波を高効率変換する物質発見

東京大学,米の研究グループは,THz周波数帯の電磁波の周波数を極めて高効率に変換できる物質を発見し,さらにそのメカニズムを解明した(ニュースリリース)。

通常の高次高調波発生の研究では,最も波長が長いものでも波長10μm程度の光が使われるが,研究グループはさらに数十倍波長の長い,THz周波数帯にて研究を進めている。この波長域の光(電磁波)は既存のエレクトロニクスよりも周波数が2,3桁高く,この帯域における周波数変換素子は次世代の高速エレクトロニクスにおいて重要と考えられる。

研究グループは,高品質なヒ化カドミウムCd3As2薄膜に注目した。ヒ化カドミウムはディラック半金属と呼ばれ,電子が3次元的に質量ゼロのように振る舞うことが注目されている。質量ゼロのディラック電子によって引き起こされる電流は非常に非線形性が強く,THz周波数帯の高次高調波をグラフェン効率よく発生させることが理論的に予測されていた。

研究グループは,レーザー光源を駆使してTHzパルス発生技術開発を進め,狭帯域の高強度THzパルス(周波数0.8THz)を発生させた。このパルスを厚さ240nmのヒ化カドミウム薄膜に対して照射したところ,3倍,5倍の周波数成分を持つ第三,第五高調波を明瞭に観測できた。

この研究で開発された実験設備は,グラフェンのTHz高調波をテーブルトップでの観測を可能にし,グラフェンとヒ化カドミウムの比較も行なわれた。

グラフェンに比べるとヒ化カドミウムではほとんどの入射電場成分が表面で反射されてしまうため試料内部に入る電場は1/5ほどしかない。しかし発生した第三高調波の電場は5倍ほど強いことが分かった。これはグラフェンよりもはるかに大きな体積を生かして周波数変換が非常に効率よく生じているためと考えられるという。

さらに研究グループはこのTHz高調波発生のメカニズムを解明するため,THzパルスで励起された電子の時間変化を超高速に時間分解して調べる実験に取り組んだ。

グラフェンのTHz高調波発生の研究では,その非線形電流の起源が,THzパルスによって加熱された電子が急速に加熱と冷却を繰り返すという,ディラック電子とは全く関係のない熱力学的モデルによって解釈されていた。

しかし精密な時間分解実験から,ヒ化カドミウム薄膜中の電子が冷却に要する時間はグラフェンの電子よりもはるかに長いこと,非線形応答が等方的には現れないことなどが明らかになり,熱力学的モデルでは説明できない結果が示された。

さらに,ヒ化カドミウム薄膜のTHz高調波発生は熱力学的モデルでは全く再現できず,ディラック電子が加速されたことによる非線形電流によってよく説明できることが確かめられた。この成果により,今後さらなる周波数変換の効率化とともに,ディラック電子の特性を生かした新規機能性の開拓が期待されるとしている。

その他関連ニュース

  • 東大,「弱い」トポロジカル絶縁体状態を実現 2021年01月20日
  • 岐阜大ら,300GHz帯テラヘルツ無線通信に成功 2021年01月14日
  • 筑波大,THz-STMにより自由電子を可視化 2021年01月13日
  • 筑波大,THz光のガラスでの吸収を関数で再現 2021年01月08日
  • 東大ら,高次トポロジカル絶縁体を初めて実証 2021年01月05日
  • 東北大ら,軟X線渦ビームのらせん波面を観測 2020年12月25日
  • 東北大,THzを制御するメタマテリアルを開発 2020年12月03日
  • 農工大ら,テラヘルツ帯ポンププローブ機構を開発 2020年11月24日